Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Vehicle Following Hybrid Control Algorithm Based on DRL and PID in Intelligent Network Environment

2022-12-22
2022-01-7113
Deep reinforcement learning (DRL) has not been widely used in the engineering field yet because RL needs to be learned through ‘trial and error’, which makes the application of this kind of algorithm in real physical environment more difficult, and it is impossible to carry out ‘trial and error’ learning on real vehicles. By analyzing the motion state of the vehicle in the car following mode, the algorithm that combined traditional longitudinal motion control with DRL improves the safety of RL in the real physical environment and the poor adaptability of the traditional longitudinal motion control algorithm. In this paper, the longitudinal motion of the unmanned vehicle is taken as the research object, and the PID algorithm is combined with the Deep Deterministic Policy Gradient (DDPG) algorithm to control the longitudinal motion of the unmanned vehicle.
Technical Paper

Deep Optimization of Catalyst Layer Composition via Data-Driven Machine Learning Approach

2020-04-14
2020-01-0859
Proton exchange membrane fuel cell (PEMFC) provides a promising future low carbon automotive powertrain solution. The catalyst layer (CL) is its core component which directly influences the output performance. PEMFC performance can be greatly improved by the effective optimization of CL composition. This work demonstrates a deep optimization of CL composition for improving the PEMFC performance, including the platinum (Pt) loading, Pt percentage of carbon-supported Pt and ionomer to carbon ratio of the anode and the cathode,. The simulation results by a PEMFC three-dimensional (3D) computation fluid dynamics (CFD) model coupled with the CL agglomerate model is used to train the artificial neural network (ANN) which can efficiently predict the current density under different CL composition. Squared correlation coefficient (R-square) and mean percentage error in the training set and validation set are 0.9867, 0.2635% and 0.9543, 1.1275%, respectively.
Technical Paper

Measurement Methods for Radar Cross Section of Passenger Vehicles

2021-11-09
2021-01-5103
Automotive millimeter-wave radar is used extensively in vehicle active safety. The Radar Cross Section (RCS) is one of the main parameters used by the automotive radar system to detect and identify surrounding vehicles. The RCS describes the electromagnetic scattering properties of objects. This paper describes a method and equipment to measure the RCS. An automobile-grade radar is used to measure the RCS of typical vehicles. A representative distance between the radar and the vehicle was chosen based on the analysis of the RCS of passenger vehicles in different distances in the near field. A cost-effective rotating platform was developed to rotate the passenger vehicles for RCS measurement in different azimuth angles. The RCS generated by the rotating platform was analyzed and mitigated. The measurement system can record the synchronized azimuth angle and RCS measurement.
Technical Paper

Effects on Cycle-to-Cycle Variations and Knocking Combustion of Turbulent Jet Ignition (TJI) with a Small Volume Pre-Chamber

2020-04-14
2020-01-1119
Turbulent jet ignition (TJI) has the advantages of improving burning rates and expanding lean burn limitations of gasoline engines. Based on a single cylinder engine, combustion process with different ignition methods, including single spark ignition, twin spark ignition, one-hole TJI and seven-hole TJI, are studied in this work. Experiments are carried out under conditions with different air/fuel equivalence ratios and different engine loads. Results show that the cycle-to-cycle variations of TJI combustion, which is evaluated by coefficient of variations (CoV) of IMEP and CoV of peak pressure, are obviously reduced due to the fast burning rate induced by the jet flame, and one-hole TJI combustion has the best combustion stability, especially for reducing the CoV of peak pressure.
Technical Paper

Research in the Effects of Intake Manifold Length and Chamber Shape on Performance for an Atkinson Cycle Engine

2016-04-05
2016-01-1086
In order to improve the fuel consumption and expand the range of low fuel consumption area of a 1.5L Atkinson cycle PFI engine, the effect of the intake manifold length and chamber shape on the engine performance is investigated by setting up a GT-power (1-D) and an AVL-Fire (3-D) computational model which are calibrated with experimental data. After this the new engine was transformed to the test bench to do the calibration experiment. The results demonstrate that the intake manifold case_1 (the length is 300mm, side intake form) matched with a new designed chamber improves combustion in cylinder with a range 1.6∼7.4g/(kW•h) reduced in fuel consumption of speed that has been studied; the case_3 (the length is 100mm, intermediate intake form) matched with the new designed chamber with a range 3.86∼7g/(kW•h) reduced in fuel consumption of speed that has been studied. Both case_1 and case_3 expand the range of low fuel consumption area significantly.
Technical Paper

Numerical Research on the Effects of Pre-Chamber Orifice Scheme on the Performance in a Large-Bore Natural Gas Engine

2023-10-31
2023-01-1631
Pre-chamber ignition is one of the advanced technologies to improve the combustion performance for lean combustion natural gas engine, which could achieve low NOx, simultaneously. The designing scheme of the orifices, which connects the pre-chamber and the main chamber, is the main challenge limiting the further improvement. In this work, the three-dimensional computational fluid dynamics calculation based on a four-stroke engine with 320 mm cylinder bore was conducted to investigate the effects of orifice structure on the combustion and NOx performance. The results show that the schemes with 7 and 9 orifices lead to the delayed high-temperature jets formation due to the asymmetrical airflow in the pre-chamber, which retards the ignition timing but enhances the combustion in the main chamber. The 6 orifices scheme leads to the insufficient distribution of the high-temperature jets, and the 10 orifices result in the serious interference between the adjacent high-temperature jets.
Technical Paper

Organic Compound Exhaust Analysis from Ethanol-Gasoline Fueled Motorcycle

2005-10-12
2005-32-0055
Ethanol-Gasoline was being promoted in China. Ethanol as substitute fuel could save such nature resource that cannot be regenerated. At the same time, oxygen additives also have potential dangerous, such as, poisonous organic compound. In this paper, a typical 125 mL four stroke single cylinder motorcycle was driven on chassis dynamometer at 5 different stable conditions which is specified in ECE 40 driving cycle. At each stably driving condition, raw gas from exhaust pipe was collected in corresponding bags respectively. Those samples were analyzed by means of gas chromatogram and mass spectrum analyzer (Agilent GC6890-MS5973). Poisonous ethanol compound such as benzene, toluene had been found in samples from ethanol blended fueled motorcycle exhausts and compared with samples from that of pure gasoline.
Technical Paper

Control of Ignition Timing and Combustion Phase by Means of Injection Strategy for Jet-Controlled Compression Ignition Mode in a Light Duty Diesel Engine

2020-04-14
2020-01-0555
Controllability of ignition timing and combustion phase by means of dual-fuel direct injection strategy in jet-controlled compression ignition mode were investigated in a light-duty prototype diesel engine. Blended fuel with lower reactivity was delivered in the early period of compression stroke to form the premixed charge, while diesel fuel which has higher reactivity was injected near TDC to trigger the ignition. The effects of several important injection parameters including pre-injection timing, jet-injection timing, pre- injection pressure and ratio of pre-injection in the total heat value of injected fuel were discussed. Numerical Simulation by using CFD software was also conducted under similar operating conditions. The experimental results indicate that the jet-injection timing shows robust controllability on the start of combustion under all the engine load conditions.
Journal Article

Study on the Double Injection Strategy of Gasoline Partially Premixed Combustion under a Light-Duty Optical Engine

2016-10-17
2016-01-2299
Gasoline partially premixed combustion (PPC) is a potential combustion concept to achieve high engine efficiency as well as low NOx and soot emissions. But the in-cylinder process of PPC is not well understood. In the present study, the double injection strategy of PPC was investigated on a light-duty optical engine. The fuel/air mixing and combustion process of PPC was evaluated by fuel-tracer planar laser-induced fluorescence (PLIF) and high-speed natural luminosity imaging technique, respectively. Combustion emission spectra of typical double injection case were analyzed. The primary reference fuel, PRF70 (70% iso-octane and 30% n-heptane by volume) was chosen as the lower reactivity fuel like gasoline. Double injection strategies of different first fuel injection timing and mass ratio of the two fuel injections were comparatively studied.
Journal Article

Simultaneous Measurement of Natural Flame Luminosity and Emission Spectra in a RCCI Engine under Different Fuel Stratification Degrees

2017-03-28
2017-01-0714
Reactivity controlled compression ignition (RCCI) is a potential combustion strategy to achieve high engine efficiency with ultra-low NOx and soot emissions. Fuel stratification can be used to control the heat release rate of RCCI combustion. But the in-cylinder combustion process of the RCCI under different fuel stratification degrees has not been well understood, especially at a higher engine load. In this paper, simultaneous measurement of natural flame luminosity and emission spectra was carried out on a light-duty optical RCCI engine under different fuel stratification degrees. The engine was run at 1200 revolutions per minute under a load about 7 bar indicated mean effective pressure (IMEP). In order to form fuel stratification degrees from low to high, the common-rail injection timing of n-heptane was changed from -180° CA after top dead center (ATDC) to -10° CA ATDC, while the iso-octane delivered in the intake stroke was fixed.
Journal Article

Laminar Burning, Combustion and Emission Characteristics of Premixed Methane- Dissociated Methanol-Air Mixtures

2017-03-28
2017-01-1289
This research presents an experimental study of the laminar burning combustion and emission characteristics of premixed methane -dissociated methanol-air mixtures in a constant volume combustion chamber. All experiments were conducted at 3 bar initial pressure and 373K initial temperature. The dissociated methanol fractions were from 20% to 80% with 20% intervals, and the equivalence ratio varied from 0.6 to 1.8 with 0.2 intervals. The images of flame propagation were visualized by using a schlieren system. The combustion pressure data were measured and exhaust emissions were sampled with a portable exhaust gas analyzer. The results show that the unstretched laminar burning velocities increased significantly with dissociated methanol enrichment. The Markstein length decreased with increasing dissociated methanol fraction and decreasing equivalence ratio.
Journal Article

Evaluation of Spray/Wall Interaction Models under the Conditions Related to Diesel HCCI Engines

2008-06-23
2008-01-1632
Diesel homogeneous charge compression ignition (HCCI) engines with early injection can result in significant spray/wall impingement which seriously affects the fuel efficiency and emissions. In this paper, the spray/wall interaction models which are available in the literatures are reviewed, and the characteristics of modeling including spray impingement regime, splash threshold, mass fraction, size and velocity of the second droplets are summarized. Then three well developed spray/wall interaction models, O'Rourke and Amsden (OA) model, Bai and Gosman (BG) model and Han, Xu and Trigui (HXT) model, are implemented into KIVA-3V code, and validated by the experimental data from recent literatures under the conditions related to diesel HCCI engines. By comparing the spray pattern, droplet mass, size and velocity after the impingement, the thickness of the wall film and vapor distribution with the experimental data, the performance of these three models are evaluated.
Journal Article

Psychoacoustic Analysis of Gear Noise with Gear Faults

2016-04-05
2016-01-1120
Gear drives are widely used in the transmission of many types of vehicles and various gear faults were reported to have different effects on the performance of transmission systems. The psychoacoustics metrics, which are used to represent the human hearing property, are objective indicators of product sound quality performance. Therefore, psychoacoustic analysis of gear noise with gear faults needs to be conducted. In this paper, different types of gear faults are summarized, and two of them, including wear and misalignment, are studied separately in the psychoacoustic analysis of the synthesized noise signal of an example gearbox. The gear noise spectra for the cases with different gear faults are synthesized based on the findings of previous publications, where it shows that the two gear faults can either increase the amplitude at the harmonics of the gear mesh frequency or cause the sideband responses.
Technical Paper

Simulation Analysis and Optimization of Vehicle Transient Response Characteristics under Steering Angle Input

2015-04-14
2015-01-0646
The transient response characteristics of a vehicle under steering angle input are important evaluating indicators of vehicle handling stability. For a new developed vehicle, which was found that the transient response under steering angle input is too slow at high speed, a rigid-flexible coupling vehicle model is established in ADAMS/Car based on multi-body dynamics theory. Improvement measures are studied and put forward to improve the transient response characteristics of the vehicle. The sensitivities of transient response to various parameters are analyzed. The optimization method of adjusting the tire cornering stiffness and moving forward the mass center is adopted. The test data after improvement show that the response time of yaw velocity is shortened obviously. Meanwhile, the value of evaluation index in other tests remains basically unchanged.
Technical Paper

Investigation into Various Strategies to Achieve Stable Ammonia Combustion in a Spark-Ignition Engine

2023-08-28
2023-24-0040
Ammonia (NH3) is a carbon-free fuel, which could partially or completely eliminate hydrocarbon (HC) fuel demand. Using ammonia directly as a fuel has some challenges due to its low burning speed and low flammability range, which generates unstable combustion inside the combustion chamber. This study investigated the effect of two different compression ratios (CRs) of 10.5 and 12.5 on the performance of ammonia combustion by using a conventional single spark-ignition (SI) approach. It was found that at a lower CR of 10.5, the combustion was unstable even at advanced spark timing (ST) due to poor combustion characteristics of ammonia. However, increasing the CR to 12.5 improved the engine performance significantly with lower cyclic variations. In addition, this research work also observed the effect of multiple spark ignition strategies on pure ammonia combustion and compared it with the conventional SI approach for the same operating conditions.
Technical Paper

Analysis of a Coordinated Engine-Start Control Strategy for P2 Hybrid Electric Vehicle

2019-11-04
2019-01-5023
P2 hybrid electric vehicle is the single-motor parallel configuration integrating with an engine disconnect clutch (EDC) between the engine and the motor. The key point with P2 hybrid electric vehicle is to start the engine utilizing the single driving motor while still propelling the vehicle, which requires an appropriate engine-start control strategy and a high mechanical performance of EDC. Since the space for EDC is limited, EDC torque response is difficult to follow the torque command, which complicates the issue of precisely controlling the clutch. Consequently, methods proposed in massive papers are inappropriate for current EDC of target vehicle. Considering that slip control of shifting clutch also contributes to reducing impact of engine start assisted by EDC, a detailed engine-start control strategy was proposed to simplify the control of EDC for being applied to actual target vehicle.
Technical Paper

A Deviation-Based Centroid Displacement Method for Combustion Parameters Acquisition

2024-04-09
2024-01-2839
The absence of combustion information continues to be one of the key obstacles to the intelligent development of engines. Currently, the cost of integrating cylinder pressure sensors remains too high, prompting attention to methods for extracting combustion information from existing sensing data. Mean-value combustion models for engines are unable to capture changes of combustion parameters. Furthermore, the methods of reconstructing combustion information using sensor signals mainly depend on the working state of the sensors, and the reliability of reconstructed values is directly influenced by sensor malfunctions. Due to the concentration of operating conditions of hybrid vehicles, the reliability of priori calibration map has increased. Therefore, a combustion information reconstruction method based on priori calibration information and the fused feature deviations of existing sensing signals is proposed and named the "Deviation-based Centroid Displacement Method" (DCDM).
Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
Technical Paper

Research on Intelligent Shift Strategy for Heavy Vehicles Based on Predictive Information

2024-04-09
2024-01-2140
By installing an automated mechanical transmission (AMT) on heavy-duty vehicles and developing a reasonable shift strategy, it can reduce driver fatigue and eliminate technical differences among drivers, improving vehicle performance. However, after detaching from the experience of good drivers, the current shifting strategy is limited to the vehicle state at the current moment, and cannot make predictive judgment of the road environment ahead, and problems such as cyclic shifting will occur due to insufficient power when driving on the ramp. To improve the adaptability of heavy-duty truck shift strategy to dynamic driving environments, this paper first analyzes the shortcomings of existing traditional heavy-duty truck shift strategies on slopes, and develops a comprehensive performance shift strategy incorporating slope factors. Based on this, forward-looking information is introduced to propose a predictive intelligent shift strategy that balances power and economy.
X